Graminicide insensitivity correlates with herbicide-binding co-operativity on acetyl-CoA carboxylase isoforms.
نویسندگان
چکیده
The sensitivity of grass species to important classes of graminicide herbicides inhibiting ACCase (acetyl-CoA carboxylase) is associated with a specific inhibition of the multifunctional ACCase located in the plastids of grasses. In contrast, the multisubunit form of ACCase found in the chloroplasts of dicotyledonous plants is insensitive and the minor cytosolic multifunctional isoforms of the enzyme in both types of plants are also less sensitive to inhibition. We have isolated, separated and characterized the multifunctional ACCase isoforms found in exceptional examples of grasses that are either inherently insensitive to these graminicides, or from biotypes showing acquired resistance to their use. Major and minor multifunctional enzymes were isolated from cell suspension cultures of Festuca rubra and the 'Notts A1'-resistant biotype of Alopecurus myosuroides, and their properties compared with those isolated from cells of wild-type sensitive A. myosuroides or from sensitive maize. Purifications of up to 300-fold were necessary to separate the two isoforms. The molecular masses (200-230 kDa) and K(m) values for all three substrates (ATP, bicarbonate and acetyl-CoA) were similar for the different ACCases, irrespective of their graminicide sensitivity. Moreover, we found no correlation between the ability of isoforms to carboxylate propionyl-CoA and their sensitivity to graminicides. However, insensitive purified forms of ACCase were characterized by herbicide-binding co-operativity, whereas, in contrast, sensitive forms of the enzymes were not. Our studies on isolated individual isoforms of ACCase from grasses support and extend previous indications that herbicide binding co-operativity is the only kinetic property that differentiates naturally or selected insensitive enzymes from the typical sensitive forms usually found in grasses.
منابع مشابه
Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves.
The steady-state kinetics of two multifunctional isoforms of acetyl-CoA carboxylase (ACCase) from maize leaves (a major isoform, ACCase1 and a minor isoform, ACCase2) have been investigated with respect to reaction mechanism, inhibition by two graminicides of the aryloxyphenoxypropionate class (quizalofop and fluazifop) and some cellular metabolites. Substrate interaction and product inhibition...
متن کاملEffects of Acetyl-Coenzyme A Carboxylase Inhibitors on Root Cell Transmembrane Electric Potentials in Graminicide-Tolerant and -Susceptible Corn (Zea mays L.).
Herbicidal activity of aryloxyphenoxypropionate and cyclohexanedione herbicides (graminicides) has been proposed to involve two mechanisms: inhibition of acetyl-coenzyme A carboxylase (ACCase) and depolarization of cell membrane potential. We examined the effect of aryloxyphenoxypropionates (diclofop and haloxyfop) and cyclohexanediones (sethoxydim and clethodim) on root cortical cell membrane ...
متن کاملFluazifop, a grass-selective herbicide which inhibits acetyl-CoA carboxylase in sensitive plant species.
Fluazifop is a grass-selective herbicide that appears to act by inhibiting fatty acid synthesis de novo in sensitive species. Results from four different types of experiment show that this inhibition is due to an action of fluazifop on acetyl-CoA carboxylase and not on fatty acid synthetase. The acetyl-CoA carboxylase from sensitive barley (Hordeum vulgare), but not from resistant pea (Pisum sa...
متن کاملDetermination of Ploidy Level and Isolation of Genes Encoding Acetyl-CoA Carboxylase in Japanese Foxtail (Alopecurus japonicus)
Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple ...
متن کاملDifferent Mutations Endowing Resistance to Acetyl-CoA Carboxylase Inhibitors Results in Changes in Ecological Fitness of Lolium rigidum Populations
Various mutations altering the herbicide target site (TS), can lead to structural modifications that decrease binding efficiency and results in herbicide resistant weed. In most cases, such a mutation will be associated with ecological fitness penalty under herbicide free environmental conditions. Here we describe the effect of various mutations, endowing resistance to acetyl-CoA carboxylase (A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 375 Pt 2 شماره
صفحات -
تاریخ انتشار 2003